Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE.

نویسندگان

  • Li Feng
  • Monvadi B Srichai
  • Ruth P Lim
  • Alexis Harrison
  • Wilson King
  • Ganesh Adluru
  • Edward V R Dibella
  • Daniel K Sodickson
  • Ricardo Otazo
  • Daniel Kim
چکیده

For patients with impaired breath-hold capacity and/or arrhythmias, real-time cine MRI may be more clinically useful than breath-hold cine MRI. However, commercially available real-time cine MRI methods using parallel imaging typically yield relatively poor spatio-temporal resolution due to their low image acquisition speed. We sought to achieve relatively high spatial resolution (∼2.5 × 2.5 mm(2)) and temporal resolution (∼40 ms), to produce high-quality real-time cine MR images that could be applied clinically for wall motion assessment and measurement of left ventricular function. In this work, we present an eightfold accelerated real-time cardiac cine MRI pulse sequence using a combination of compressed sensing and parallel imaging (k-t SPARSE-SENSE). Compared with reference, breath-hold cine MRI, our eightfold accelerated real-time cine MRI produced significantly worse qualitative grades (1-5 scale), but its image quality and temporal fidelity scores were above 3.0 (adequate) and artifacts and noise scores were below 3.0 (moderate), suggesting that acceptable diagnostic image quality can be achieved. Additionally, both eightfold accelerated real-time cine and breath-hold cine MRI yielded comparable left ventricular function measurements, with coefficient of variation <10% for left ventricular volumes. Our proposed eightfold accelerated real-time cine MRI with k-t SPARSE-SENSE is a promising modality for rapid imaging of myocardial function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved k-t FOCUSS using a sparse Bayesian learning

Introduction: In dynamic MRI, spatio-temporal resolution is a very important issue. Recently, compressed sensing approach has become a highly attracted imaging technique since it enables accelerated acquisition without aliasing artifacts. Our group has proposed an l1-norm based compressed sensing dynamic MRI called k-t FOCUSS which outperforms the existing methods. However, it is known that the...

متن کامل

Novel highly accelerated real-time CINE-MRI featuring compressed sensing with k-t regularization in comparison to TSENSE segmented and real-time Cine imaging

Background In patients with breath-holding difficulties or arrhythmia, real-time CINE-MRI is preferred over segmented acquisitions in one breath-hold. However, common real-time sequences require a deteriorating trade-off between spatial and temporal resolution. In the current work, highly accelerated real-time CINE-MRI which features compressed sensing with k t regularization [1] was evaluated ...

متن کامل

Highly-Accelerated Real-Time Cine MRI using compressed sensing and parallel imaging

Introduction Breath-hold cine MRI with balanced steady-steady free precession (b-SSFP) may yield non diagnostic image quality in patients with impaired breath-hold capacity and/or arrhythmias. In such patients, it may be necessary to perform real-time cine MRI. Currently, dynamic parallel imaging methods, such as TSENSE [1] and TGRAPPA [2], can be used to achieve only moderate acceleration rate...

متن کامل

Highly-Accelerated First-Pass Cardiac Perfusion MRI Using Compressed Sensing and Parallel Imaging

INTRODUCTION: First-pass cardiac perfusion MRI is a promising modality for the assessment of coronary artery disease. Recently developed dynamic parallel imaging techniques, such as k-t SENSE [1] and k-t GRAPPA [2], can be used to perform up to 10-fold accelerated perfusion imaging by exploiting the difference in coil sensitivities and spatio-temporal correlations. Such techniques can be used t...

متن کامل

Biventricular strain analysis at 1.5T cardiac MR imaging: preliminary results in volunteers using an iterative SENSE reconstruction with L1 regularization

Background Changes in myocardial strain have been shown to precede onset of systolic dysfunction in patients with cardiomyopathy. Traditionally performed with echocardiography, acoustic windows can limit strain evaluation. Preliminary work has shown good agreement between myocardial strain derived from deformation field analysis at balanced steady-state free-precession (bSSFP) cine MRI and spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 70 1  شماره 

صفحات  -

تاریخ انتشار 2013